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Near Discharge Cathode Assembly Plasma
Potential Measurements in a 30-cm NSTAR-
type Ion Engine amidst Beam Extraction

Floating emissive  probe plasma potential data are presented over a two-dimensional array of 

locations in the near Discharge Cathode Assembly (DCA) region of a 30-cm diameter ring-cusp

ion thruster. Discharge plasma data are presented with beam extraction at throttling conditions

comparable to the NASA TH Levels 8, 12, and 15. The operating conditions of the Extended Life 

Test (ELT) of the Deep Space One (DS1) flight spare ion engine, where anomalous discharge 

keeper erosion occurred, were TH 8 and TH 15; consequently, they are of specific interest in 

investigating discharge keeper erosion phenomena.
5,6

 The data do not validate the presence of a 

potential hill plasma structure downstream of the DCA, which has been proposed as a possible 

erosion mechanism.
9,10

The data are comparable in magnitude to data taken by other researchers

in ring-cusp electron-bombardment ion thrusters.
23,24

The plasma potential structures are

insensitive to thruster throttling level with a minimum as low as 14 V measured at the DCA exit 

plane increasing gradually in the axial direction. Shorting of the discharge keeper to discharge 

cathode common, at roughly NASA TH 8, did not have a significant effect on the near DCA plasma 

structure. A sharp increase in plasma potential to the bulk discharge value of 26 – 28 volts, 

radially past the discharge keeper edge, was observed. Plasma potential measurements indicate a 

low-potential plume structure emanating from the discharge cathode that may be attributed to a 

free-standing plasma double layer.
25

Nomenclature

B = magnetic field magnitude, Gauss

d = emitting filament wire diameter, mm

Ja = acceleration grid current, mA

Jb = beam current, A

Jdc = discharge current, A

Jnk = neutralizer keeper current, A

Pb = base pressure (air), Torr

Pi = indicated pressure (xenon), Torr

Pc = corrected pressure (xenon), Torr

TeV = electron temperature, eV

Va = acceleration grid voltage, V

Vck-cc = keeper to cathode common voltage, V

Vdc = discharge voltage, V

Vnk = neutralizer keeper voltage, V

Vs = screen grid voltage, V

φp or Vp = local plasma potential, V

Daniel A. Herman and Alec D. Gallimore 
Plasmadynamics and Electric Propulsion Laboratory 

University of Michigan 
Ann Arbor, Michigan 48109 
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I. Introduction

ON thrusters are high-efficiency, high-specific impulse (Isp) propulsion systems that are being proposed as the 

primary propulsion source for a variety of missions. In some cases ion thruster technology has enabled new 

missions that had not been feasible using liquid propellant rocket technology. NASA’s Dawn mission, propelled by 

three 30-cm ion thrusters, will study two minor planets, Ceres and Vesta, which reside in the vast asteroid belt 

between Mars and Jupiter.
§
 The NASA Solar Electric Propulsion Technology Applications Readiness (NSTAR) 30-

cm ion thruster was the first ion engine to be used for primary spacecraft propulsion, validating ion thruster 

technology, and demonstrating operation for over three times its intended lifetime.
**

 Nevertheless, efforts to increase 

engine lifetime continue.

A potential failure mechanism for an ion engine is erosion of the discharge cathode.
1

Investigation of the 

discharge cathode erosion led to evidence that direct ion impingement was the cause. A cathode keeper was added,

as an engineering solution to mitigate cathode erosion on NSTAR.
2
 Adding the keeper reduced the cathode erosion 

rate to acceptable levels and, until recently, was thought to have solved the Discharge Cathode Assembly (DCA) 

erosion issue. An Extended Life Test (ELT) of the NSTAR Deep Space One (DS1) flight spare thruster, conducted at 

the Jet Propulsion Laboratory (JPL), revealed extensive keeper erosion that has yet to be fully exp lained.
3-6

 Although 

the engine continued to operate until it was voluntarily shut down after 30,352 hours of operation (over 235 kg of 

xenon processed)
6
, there exists a clear need to understand the cause of DCA erosion, how engine operating 

conditions affect DCA erosion, and how to reduce DCA erosion thereby extending engine lifetime. A better 

understanding of discharge cathode erosion mechanisms may be even more important for the next -generation of ion 

engines associated with NASA’s Project Prometheus that require lifetimes ranging from 44,000 to 88,000 hours.
7, 8

 Laser Induced Fluorescence (LIF) measurements by Williams have suggested the existence of a potential hill 

downstream of the DCA as a possible cause of DCA erosion.
9-11

In this scenario, the potential hill is responsible for

accelerating a portion of the ions away from the hill towards the DCA. Mapping the internal plasma structure of the 

30-cm ion engine downstream of the DCA is essential to understanding the cause of DCA erosion and could validate

or rule out the potential hill theory. The purpose of this experiment is to take high-spatial resolution plasma potential 

measurements in the near DCA region of the 30-cm ion engine.

II. FMT2 30-cm Ion Thruster

A. Background

The Functional Model Thruster (FMT) preceded the NSTAR Engineering Model Thruster (EMT) and the NSTAR 

Flight Thruster. The principal difference in the construction of the FMT from the EMT is the anode material. The 

FMT anode is aluminum while the EMT anode is spun aluminum and titanium. The second of two FMTs, FMT2, was 

modified at the NASA Glenn Research Center (GRC) by Williams to allow optical access to the discharge chamber for 

LIF measurements.
9
 Six slots were cut into FMT2: three slots in the anode wall and three slots in the plasma shield.

Photographs of the FMT2 ion engine and the LIF modifications can be seen in Figure 1.

§
http://solarsystem.nasa.gov/missions/astmissns/ast-dawn.html

**
http://nmp.jpl.nasa.gov/ds1/gen/mission.html

I

a)   b)

Figure 1. The FMT2 ion engine illustrating the locations of the top and side quarts window mount a), as well as 

a close-up view of the FMT2 side LIF slots and quartz window mounts with quartz removed b).

Top quartz window
Side plasma 

shield slot 
DCA Side anode slotSide plasma shield slot
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The magnetic field, DCA, and geometry of the discharge chamber are identical to those of the EMT1.
9
 For a more 

complete comparison between FMT2 and EMT1 see Reference 9. The FMT2 thruster has been operated over the 

entire NSTAR power throttling range at GRC and at the Plasmadynamics and Electric Propulsion Laboratory (PEPL) 

illustrating comparable performance to the EMTs and flight thrusters. Williams has shown that these modifications 

have not altered the discharge chamber magnetic field, the ion production efficiency, or the overall thruster 

performance.
9

B. Discharge Plasma Containment Mechanism

The side anode quartz window is replaced by a discharge plasma containment mechanism allowing electrostatic 

probe access inside the anode. The design, shown in Figure 2, consists of a series of overlapping 38-guage slotted 

stainless steel sheets.

Repeatable axial movement of the probe is permissible. Discharge plasma containment is maintained and visually 

monitored during thruster operation via an adjacent vacuum-rated camera. Gap formation, while extracting a beam, 

leads to a surge of discharge plasma towards the hole as the high-voltage plasma escapes to ground. Repeated 

recycles of the engine ensue. The vacuum-rated camera 

allows confirmation that no gap formation has occurred 

throughout the test and that any engine recycles are not a 

result of gap formation.

The ability to retract and ext end the translating alumina 

tube at various axial locations minimizes protrusion of 

material into the discharge chamber. The alumina tube 

extends approximately 1 cm inside of the discharge

chamber wall at all axial locations. The alumina tube is 

mounted onto a New England Affiliated Technologies 

(NEAT) RMS-800 single axis ball screw table controlled via 

computer. The table has a lead screw accuracy of 80 µm

and a range of motion of 20 cm. Figure 3 illustrates the 

emissive probe experimental setup. For more information

on the discharge plasma containment mechanism, see

Reference 12.

To minimize the likelihood of probe contamination and 

perturbing the discharge plasma, the probe is recessed in 

the low-density interior of the alumina tube when not in 

use. A rectangular aluminum plate covers the side plasma 

shield slot eliminating the line of sight of background 

particles (i.e., electrons) to the high potential anode.

Plasma containment sheet: 

(38-gauge stainless steel)

Existing anode slotExisting

bolts

Stainless guiding 

tracks

Translating tube access hole

4 slotted stainless 

sheets

Outer Alumina tube
DCA

Slotted stainless sheets

a)  b)

Figure 2. Schematic of the discharge plasma containment hardware covering the anode side slot shown in a),

along with a photograph taken inside the FMT2 discharge chamber prior to engine testing showing the interior 

of the discharge plasma containment mechanism in b).

Extended plasma 

shield cover

Plasma shieldGuiding tracks

Plasma

containment

sheets

Existing bolts

Alumina tubing

Tungsten filament

(Emissive probe tip)

Translating

Alumina tube

Anode

DCA

Macor slab

DCA and thruster centerline

r

z

NEAT translating

table

Reciprocating

probe

Figure 3. Schematic of the experimental setup

focusing on the discharge plasma containment and 

thruster orientation.
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III. Apparatus and Procedure

A. Vacuum Facility

All experiments are performed in the 6 m by 9 m Large Va cuum Test Facility (LVTF) at PEPL. Four of the seven 

CVI Model TM-1200 Re-Entrant Cryopumps are used for these experiments, which provide a combined pumping 

speed of 140,000 l/s on xenon with a base pressure of ~3x10
-7

 Torr. Chamber pressure is recorded using a hot-cathode

ionization gauge mounted directly on the chamber wall. A complete neutral pressure map of the LVTF has shown that 

the wall-mounted ion gauge pressure is representative of the chamber background pressure near the thruster in this 

facility.
13

 Pressure measurements are corrected for xenon using the known base pressure on air and a correction 

factor of 2.87 for xenon according to,
13-15

bP
bPiP

cP +
−

=
87.2

. (1)

A dedicated propellant feed system, consisting of three Edwards mass flow controllers, provided by NASA GRC, 

controls the xenon flow rate to the thruster. The flow rates are periodically calibrated using a known volume 

technique.

A 2 m by 2.5 m louvered graphite panel beam dump is positioned approximately 4 m downstream of the FMT2

thruster to reduce back sputtering. The thruster is operated at PEPL using a modified Station-Keeping Ion Thruster 

Package (SKIT-Pac) power processing and control rack provided by NASA GRC. Unless specified otherwise, the 

discharge cathode keeper is  electrically connected to the anode by a 10 k? resistor throughout testing.

B. High-speed Axial Reciprocating Probe (HARP)

A linear motor assembly provides highly accurate direct linear motion of the probe with minimal residence times in 

the discharge cathode plume. The HARP system is a three-phase brushless dc servo motor consisting of a linear 

“U”-shaped magnet track and a “T”-shaped coil moving on a set of linear tracks. The linear encoder provides 

positioning resolution to 5 µm.
16

 A Pacific Scientific SC950 digital, brushless servo drive controls the motor. The

entire table is enclosed in a stainless steel shroud with a graphite outer skin. Residence times of the probe inside the 

discharge chamber are kept under one second to minimize probe heating and discharge plasma perturbation. The

residence time of the probe downstream of the DCA, inside the high-density discharge cathode plume, is typically

100 milliseconds. The short residence times minimize the discharge plasma perturbation during probe insertion, which 

is monitored by the discharge current perturbation during probe insertion.  The maximum perturbation recorded 

during probe insertion was 5 - 10% of the discharge current nominal value. Additional information on the HARP 

system can be found in References 16 and 17.

C. Axial Movement

The FMT2 is mounted on an ATS62150 Aerotech single-axis translational stage. The Aerotech axis controls the 

engine axial location with respect to the probe to an absolute position accuracy of 0.15 mm. An axial step size of 1.5 

mm is used to give adequate resolution of the possible potential hill structure that has been proposed to exist within 

a few centimeters of the discharge keeper exit plane.
9

The emissive probe is radially positioned inside the discharge 

chamber using the HARP. Both the HARP system and the Aerotech table are mounted on a common structure whose 

foundation is the vacuum facility wall. This setup minimizes alignment shifts occurring during vacuum chamber 

evacuation. When actuated, the probe extends to the thruster centerline then returns to the starting location recessed 

inside the translating alumina tube. The RMS-800 NEAT table retracts and extends the translating alumina tube as the 

axial location changes. The full 2-D data collection domain is illustrated in Figure 4.

NASA/CR—2006-213296 4



D. FMT2 Thruster Operation

For this near DCA investigation, the primary thruster operating parameters of interest are the discharge current 

and voltage, the screen voltage, and the beam current. The procedure for operating the FMT2 with beam extraction

is to throttle up the discharge current and screen voltage to match the desired NASA TH Level discharge current. 

The main and discharge flow rates are adjusted until both the discharge cathode voltage and beam current match the

corresponding NASA throttling table values. The engine is operated without neutralizer emission current for this 

experiment due to difficulty igniting the neutralizer cathode. For this experiment, an equivalent mass flow rate from

previous FMT2 testing with the neutralizer ignited is set for the neutralizer and the neutralizer common lead is

grounded to facility ground. The data taken with beam extraction are referred to as Thruster Operating Conditions 

(TOC Levels). Table 1 details  the complete listing of the thruster telemetry for the operating condition investigated in 

this experiment.

Table 1. FMT2 Thruster Operating Conditions (TOC) with beam extraction corresponding to the NASA Throttling 

Level (TH) indicated in grey for reference.

Vdc Jdc Vck-cc Vs Jb Va Ja Vnk Jnk

Main

flow

Disch

Cath.

flow

Neut

Cath.

flow Pc

V A V V A V mA V A sccm sccm sccm Torr

TOC 8a 25.20 8.24 7.70 1100 1.10 -180.0 5.46 - - 17.0 4.37 4.49 4.1E-06

TOC 8 25.20 8.24 6.84 1100 1.10 -180.0 5.15 - - 17.1 4.54 4.49 4.1E-06

TOC 8 

short 25.15 8.24 0 1100 1.10 -180.0 5.09 - - 16.9 4.64 4.49 4.2E-06

TH 8 25.10 8.24 - 1100 1.10 -180.0 3.139 15.32 1.50 14.41 2.47 2.40 -

TOC 12 25.40 10.87 5.86 1100 1.49 -180.0 6.94 - - 21.6 3.52 4.49 4.4E-06

TH 12 25.40 10.87 - 1100 1.49 -180.0 4.704 14.52 1.50 19.86 2.89 2.81 -

TOC 15 25.15 13.13 5.47 1100 1.76 -180.1 8.46 - - 24.8 3.13 4.49 4.6E-06

TH 15 25.14 13.13 - 1100 1.76 -180.0 5.993 14.02 1.50 23.43 3.70 3.60 -

Level

IV. Emissive Probe

A. Emissive Probe Theory

The floating emissive probe operates under a simple principle yielding direct measurement of the local plasma

potential without the need for a bias voltage sweep or extensive data analysis . The theory of the floating emissive 

probe is well established.
17-19

Current is applied through a filament that is inserted into the plasma at the point of 

interest. As the filament heats up, electrons are thermionically emitted from the filament. When heated sufficiently, 

the emitted electrons essentially neutralize the sheath around the probe tip  allowing the probe (and probe circuitry) to 

float at the local plasma potential.

FMT2 moves in 

axial direction

Translating tube

Accel grid

Screen grid

DCA

Emissive probe

Translating table
Probe arm 

mount moves in 

radial direction

r

z

Plasma shield

HARP table 

fixed

position

Accel grid

DCA Screen grid

Anode

Figure 4. FMT2 orientation with respect to the HARP for probe insertion a), and the 2D data collection domain 

starting at an axial location of 1.5 mm from the DCA and increasing in 1.5 mm increments b).

b)a)
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B. Emissive Probe Filament

The filament of the emissive probe was selected as the smallest available diameter tungsten wire that allows 

manageable construction of the emissive probe and has adequate survivability under the high accelerating forces of

the HARP system. The emitting portion of the probe, shown in Figure 5, consists of 0.127 mm diameter tungsten wire

bent to form a closed loop roughly 1.2 mm in diameter.

The filament is  held inside two double bore pieces of 99.8% pure alumina epoxied to one larger double bore piece 

of 99.8% pure alumina. Two 18 AWG copper wire leads run the entire length of the 0.5 m probe up to the probe tip to

reduce the resistance of the closed path and hence reduce the undesirable voltage drop associated with it. The ends 

of the tungsten filament are inserted down the small alumina tube along with additional lengths of 0.18 mm and 0.13 

mm tungsten wire creating a snug fit. Additional tungsten wires (and the filament ends) are sandwiched in contact 

with the 18 AWG leads to ensure good contact between the tungsten and copper wires. The filament is further held 

in place by ceramic epoxy.

The “double tier” design of the emissive probe tip reduces the amount of blockage mass that is inserted into the 

discharge cathode plume. The probe is oriented such that the plane of the loop of the probe filament is perpendicular 

to the thruster axial direction. This allows the maximum axial resolution and bodes well with the axisymmetric nature of 

the discharge chamber and discharge cathode plume. Two identical probes were used during testing, due to breakage 

at the high HARP accelerations, each requiring a slightly different saturation heater current.

C. Magnetic Field Effects

The presence of large magnetic fields and large density gradients can lead to space-charge effects, causing 

disparity between the potential of the emitting probe and the actual local plasma potential. Space-charge effects can 

be avoided by sizing the probe such that the filament diameter, that is the diameter of the tungsten wire and not the 

loop diameter, is much less than the electron gyroradius. This condition has been shown by Hershkowitz to be 

equivalent to the following equation:
18

( )10

8.4

d

T
B

eV<< . (2)

In this equation, TeV is in eV, d is the emitting filament diameter in mm, and B is the magnetic field in Gauss. For

this experiment the filament diameter is 0.127 mm and the electron temperature inside the discharge chamber ranges 

from 3 – 7 eV, based upon single and double Langmuir probe measurements made inside the discharge chamber of

the FMT2 thruster.
20,21

 Using the minimum electron temperature of 3 eV and the emissive probe 0.127 mm filament 

diameter in the Hershkowitz equation, yields the restriction that B << 650 G. The magnetic field in the discharge 

chamber of the FMT2 has a maximum magnitude on the order of 100 G at the exit plane of the discharge cathode and 

decreases with increasing axial and radial distances from the centerline DCA exit plane. The location of the highest

magnetic field coincides with the position of the highest electron temperature. Thus, the Hershkowitz criterion is  met

even in the absolute worst scenario.

Ceramic epoxy

Copper leads

0.127 mm diameter

Tungsten filament

Tungsten

wire

Double bore 

Alumina

insulation tube
5.6 mm Dia Alumina

1.3 mm 

Dia Alumina

0.127  mm Dia 

Tungsten

20 mm

1.2  mm

1.2 mm

a)  b)

Figure 5. Double tier emissive probe tip design internal schematic shown in a), and an external schematic of 

emissive probe tip design shown in b).
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D. Emissive  Probe Electronics

The emissive probe circuit, illustrated in Figure 6, consists of the emissive probe, a dc power supply capable of 

supplying enough current to heat the filament, an isolation transformer to isolate the power supply from ground, and 

two isolation amplifiers to record both the emitting probe potential and the voltage drop across the filament. Data

collection is built around two Analog Devices AD210 isolation amplifiers, which are capable of handling up to 2500 

volts of common mode voltage and provide an input 

impedance of 10
12 Ω . The low impedance output (1 Ω

maximum) is connected to a Tektronix TDS 3034B digital 

oscilloscope which, when triggered off the probe position,

records the plasma potential and filament voltage drop.

All plasma potential measurements are made with

respect to the discharge cathode common and not the 

facility ground. Due to the recession of the probe tip inside 

the alumina tube when data collection is not taking place, 

floating potentials negative of discharge cathode common 

are observed. This expected result indicates the

effectiveness of the magnetic field in confining the

discharge plasma. The transverse diffusion of charged 

particles across the magnetic field lines is inhibited

resulting in a floating potential somewhere between the 

bulk discharge plasma potential (in this case approximately 

1100 V referenced to ground) and facility ground.

Typical floating potentials of the emissive probe in the 

“stored” configuration are 700 V with respect to ground (-

400 V with respect to discharge cathode common). This 

relative voltage, combined with the restriction of the isolation amplifiers maximum allowable differential voltage,

dictated the size of the voltage divider resistors and thus the resolution of the circuit . Both the “high” and “low” side 

floating potentials , of the power supply, are recorded indicating the uncertainty of the measurement, however, only 

the high side potentials are reported. 

V. Data Acquisition

Adequate heater current must be applied to the filament to neutralize the probe sheath. The correct heater current 

is determined by taking several preliminary sweeps at the zero axial position and observing when the probe potential 

saturated. Figure 7 illustrates the difference between sufficient and insufficient heater current. With minimal heater 

current, the probe potential is well below cathode common potential. When the filament reaches the cathode plume 

there is a substantial jump in the probe potential. During the time that the probe is stationary in the discharge 

cathode plume, the probe floating potential increases as the plasma provides additional filament heating by the flux of 

high-energy particles in the high-density cathode plume.

At intermediate heater current, the probe potential continues to exhibit  a sharp drop off in probe potential (a few 

hundred volts) immediately outside of the cathode plume. Increasing to sufficient heater current shifts the few

hundred volt drop in probe potential to the location at which the probe is recessed inside the outer alumina tube. At

this current, the probe potential is approximately at anode potential, outside of the outer alumina tube, and does not 

exhibit an increase in floating potential while the probe is stationary in the cathode plume. Once a sufficient heater 

current is determined, the emissive probe current is held at this value for the entire data collection domain.

Probe

voltage

(high)

Discharge

plasma

Cathode

Common

Isolation

Amplifier953 kΩ 22 kΩ

Probe

voltage

(low)

Isolation

Amplifier953 kΩ
22 kΩ

Emissive probe

Chamber Wall

Power

Supply

I
Scope

Figure 6. Emissive probe circuit.

Keeper
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Figure 7. Graphs of the emissive probe floating potential and position as a function of time made with respect to the 

discharge cathode common. The emissive probe tip exits the alumina tube into the discharge plasma after 0.15

seconds. The sweeps were taken at TOC 8a with a Vdc = 25.20 volts and Jdc = 8.24 A. Insufficient heater current 

(4.6 A) is indicated in a) with comparison to sufficient heater current (5.0 A) illustrated in b). 

VI. Results and Discussion

Figures 8 – 10 illustrate the high side plasma potentials at various thruster operating conditions with beam 

extraction. An average value of the high and low side potential measurements would be shifted down approximately 

1.5 V. All potentials are in reference to the discharge cathode common of the FMT2 thruster. All discharge chamber 

positions have been normalized by the discharge cathode keeper diameter. The plasma potential contours

demonstrate an on-axis minimum region indicating the plume structure of discharge cathode. Evaluation of the 

centerline plasma potential values does not support the existence of a potential hill structure at the operating 

conditions investigated. This does not completely rule out the potential hill as the contributor in discharge cathode 

assembly erosion since, under different cathode and thruster operating conditions, the potential hill structure may in 

fact exist and act as a mechanism to cause DCA erosion. The emissive probe measurement is  repeatable for the two 

similar probes as well as slightly different engine operating conditions, evident by comparison of Figs. 8 and 9, which 

were taken using different probes during different facility pump downs.

Figure 8. Plamsa potentials with respect to discharge cathode common for TOC 8a operating condition (Vdc = 25.2

V, Jdc = 8.24 A) taken with probe tip 1 with a heater current of 4.8 amps. 

Vp [V]

Vp [V]
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Figure 9. Plamsa potentials with respect to discharge cathode common for TOC 8 operating condition (Vdc = 25.2 V, 

Jdc = 8.24 A) taken with probe tip 2 with a heater current of 5.0 amps. 

Examination of the near DCA plasma structure shown in Fig. 10 illustrates very little variation as the engine is 

throttled up to higher power levels. Additionally, at the NASA TH 8 level, the discharge cathode keeper is

intentionally shorted to the discharge cathode common to simulate the “shorting event” that occurred during the 

ELT at JPL.
5,6

 Shorting the cathode keeper does not change the near DCA plasma structure noticeably. Thus,

shorting the keeper has no appreciable effect on the near-DCA plasma potential structure beyond the keeper sheath.

a) b)

c) d)

Figure 10. Near DCA plasma potential measurements for the following thruster operating conditions: a) TOC 8 

(Vdc = 25.2 V, Jdc =8.24 A), b) TOC 8 with cathode keeper shorted to cathode common (Vdc = 25.15 V, Jdc = 8.24 A),

c) TOC 12 (Vdc = 25.40 V, Jdc = 10.87 A), and TOC 15 (Vdc = 25.14 V, Jdc = 13.13 A).  All measurements were made 

with beam extraction, using probe tip 2, a 5.0 A heater current, and are with respect to discharge cathode common.

Plasma potential measurements taken by a number of researchers indicate discharge plasma potentials at or a few 

volts above anode potential.
9,22-25

Williams measured plasma potentials on a 6.4 mm diameter hollow cathode in a 

cylindrical anode with a xenon cathode flow rate of 4 sccm and cathode emission current of 6 A. The measured

plasma potentials were slightly above anode potential and decreased as the cathode was approached.
9

The same 

trend is evident in Figures 8 – 10. Single Langmuir probe measurements in the FMT2 indicate a bulk dis charge plasma 

potential ranging from 27 to 30 volts away from the discharge cathode plume.
21

 The slight difference (a few volts) 

between the bulk discharge potentials is certainly within the error of the two measurements.

Vp [V]

Vp [V]

Vp [V]

Vp [V]
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Figure 12. Centerline potential profiles for

similar operating conditions using two tips and 

taken during separate pump downs.
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Foster and Patterson have taken high-current hollow cathode measurements with a Langmuir probe near a 12.7 

mm hollow cathode inside a ring-cusp magnetic field without beam extraction. A radial profile 3 mm downstream of 

the DCA exit plane, at a discharge current of 10.5 A and discharge voltage of 26.5 V, shows a quick increase in plasma 

potential from 14 V at cathode centerline to 22 V near the keeper edge that was attributed to the existence of a double 

layer plasma structure formed between the discharge cathode plasma column and the main discharge.
25

 The relative 

magnitude of the near DCA and near anode potentials  compared to the discharge voltage, as well as the well defined 

discharge cathode plume structure, coincide with those observed in this investigation.

Discharge cathode centerline data are readily compared again indicating little variation as the engine is throttled 

up in power. A slightly decreasing magnitude, less than 1 volt, is discernable as the engine is throttled up, but this 

trend is within the estimated error of the emissive probe measurement. Figure 11 illustrates this finding as well as the 

insensitivity of the DCA centerline potential data to shorting the discharge keeper to discharge cathode common at 

TOC 8 (roughly NASA TH 8).
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a)  b)

Figure 11. Discharge cathode centerline plasma potential profiles for various throttling conditions are illustrated

in a), while results from shorting the discharge keeper to cathode common is shown in b). All data are with beam 

extraction and show little variation.

VII. Error Analysis

The floating power supply may not be perfectly isolated from ground, which introduces the possibility of leakage 

current when the probe and dc supply float at high potential. The result of appreciable leakage current is the probe 

floating at a value less than the true plasma potential. To determine the effect of the leakage current, the measured 

plasma potential near the anode is compared to the true anode potential. Figures 8 – 10 illustrate that near the anode 

the measured plasma potential is at or a few volts above anode potential, which is  consistent with measurements by 

other researchers. The combination of the aforementioned point and the higher than anode plasma potentials indicate

that there is no appreciable leakage current. 

Plasma potential measurement, with heater current through 

the filament, leads to a voltage drop across the filament. This 

voltage drop adds to the uncertainty in the measured value. 

The voltage drop is recorded during the test and is

approximately 3 V, leading to an uncertainty of ± 1.5 volts. The 

effects of the leakage current and voltage drop contribute to an 

overall shift in absolute magnitude of plasma potential

measurement leaving the relative potential measurements

unaffected.  An analysis  by Hargus indicates  that the apparent 

plasma potential of the probe filament is within several volts of 

the true plasma potential.
26

 Error bars in Figures 11 and 12 are

indicated as +2/-4 volts taking into account the high side 

selection of floating potentials.

Noise is reduced as much as possible by using coaxial 

cables for the entire circuit, both inside and outside of the 

chamber. Isolated feedthroughs permit a common grounding 

point for all circuit components, eliminating noise pick-up

through ground loops.
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The perturbation of the discharge current by the probe insertion was recorded throughout the test. As expected 

the maximum perturbation occurred at the closest axial position on centerline. The temporary perturbation spike in 

discharge current is at most 10% of the nominal value. Outside of the discharge cathode plume region, no 

perturbation is detectable. Figure 12 supports the repeatability of the emissive probe measurement as the DCA 

centerline data taken with two different probes on different days of engine operation are comparable.

VIII. Conclusions

Plasma potential measurements inside the discharge chamber of a 30-cm ring-cusp ion thruster are presented for 

several operating conditions with beam extraction. The thruster operating conditions investigated correspond to the

operating conditions of the JPL Extended Life Test (ELT) in which anomalous discharge keeper erosion was

observed. Plasma potential magnitudes are comparable to those measured by other researchers in electron 

bombardment discharge plasmas and are on the order of a few volts above anode potential away from the cathode 

plume. The discharge plasma contours are relatively insensitive to both the throttling of the engine and to shorting of 

the discharge cathode keeper to the discharge cathode common. The plasma potential contours illustrate a clearly 

defined region of lower potential where the discharge cathode plume resided indicative of a double layer. A minimum

potential of approximately 14 V occurs on centerline at the closest axial position to the discharge cathode assembly. 

Plasma potential abruptly increases with increasing radial distance from the discharge cathode orifice, but increases

more gradually in the axial direction. A potential hill structure is not observed, though the possibility for this 

structure to be present at other thruster operating conditions still exists. The potential increases to 26 - 28 volts

relative to cathode common near the anode. The anode is ~ 25 V relative to cathode common during all tests.
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Floating emissive probe plasma potential data are presented over a two-dimensional array of locations in the near
Discharge Cathode Assembly (DCA) region of a 30-cm diameter ring-cusp ion thruster. Discharge plasma data are
presented with beam extraction at throttling conditions comparable to the NASA TH Levels 8, 12, and 15. The operat-
ing conditions of the Extended Life Test (ELT) of the Deep Space One (DS1) flight spare ion engine, where anomalous
discharge keeper erosion occurred, were TH 8 and TH 12 consequently they are of specific interest in investigating
discharge keeper erosion phenomena. The data do not validate the presence of a potential hill plasma structure down-
stream of the DCA, which has been proposed as a possible erosion mechanism.  The data are comparable in magnitude
to data taken by other researchers in ring-cusp electron-bombardment ion thrusters. The plasma potential structures are
insensitive to thruster throttling level with a minimum as low as 14 V measured at the DCA exit plane and increasing
gradually in the axial direction. A sharp increase in plasma potential to the bulk discharge value of 26 to 28 volts,
roughly 10 mm radially from DCA centerline, was observed. Plasma potential measurements indicate a low-potential
plume structure that is roughly 20 mm in diameter emanating from the discharge cathode that may be attributed to a
free-standing plasma double layer.
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